8.5. User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python classes). Exceptions should typically be derived from the Exception class, either directly or indirectly. For example:
>>> class MyError(Exception):
...     def __init__(self, value):
...         self.value = value
...     def __str__(self):
...         return repr(self.value)
...
>>> try:
...     raise MyError(2*2)
... except MyError as e:
...     print 'My exception occurred, value:', e.value
...
My exception occurred, value: 4
>>> raise MyError('oops!')
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'
In this example, the default __init__() of Exception has been overridden. The new behavior simply creates the value attribute. This replaces the default behavior of creating the args attribute.
Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only offering a number of attributes that allow information about the error to be extracted by handlers for the exception. When creating a module that can raise several distinct errors, a common practice is to create a base class for exceptions defined by that module, and subclass that to create specific exception classes for different error conditions:
class Error(Exception):
    """Base class for exceptions in this module."""
    pass

class InputError(Error):
    """Exception raised for errors in the input.

    Attributes:
        expr -- input expression in which the error occurred
        msg  -- explanation of the error
    """

    def __init__(self, expr, msg):
        self.expr = expr
        self.msg = msg

class TransitionError(Error):
    """Raised when an operation attempts a state transition that's not
    allowed.

    Attributes:
        prev -- state at beginning of transition
        next -- attempted new state
        msg  -- explanation of why the specific transition is not allowed
    """

    def __init__(self, prev, next, msg):
        self.prev = prev
        self.next = next
        self.msg = msg
Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.
Many standard modules define their own exceptions to report errors that may occur in functions they define. More information on classes is presented in chapter Classes.

8.6. Defining Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must be executed under all circumstances. For example:
>>> try:
...     raise KeyboardInterrupt
... finally:
...     print 'Goodbye, world!'
...
Goodbye, world!
KeyboardInterrupt
A finally clause is always executed before leaving the try statement, whether an exception has occurred or not. When an exception has occurred in the try clause and has not been handled by an except clause (or it has occurred in a except or else clause), it is re-raised after the finally clause has been executed. The finally clause is also executed “on the way out” when any other clause of the try statement is left via a break, continue or return statement. A more complicated example (having except and finally clauses in the same try statement works as of Python 2.5):
>>> def divide(x, y):
...     try:
...         result = x / y
...     except ZeroDivisionError:
...         print "division by zero!"
...     else:
...         print "result is", result
...     finally:
...         print "executing finally clause"
...
>>> divide(2, 1)
result is 2
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
  File "<stdin>", line 3, in divide
TypeError: unsupported operand type(s) for /: 'str' and 'str'
As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is not handled by the except clause and therefore re-raised after the finally clause has been executed.
In real world applications, the finally clause is useful for releasing external resources (such as files or network connections), regardless of whether the use of the resource was successful.

8.7. Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open a file and print its contents to the screen.
for line in open("myfile.txt"):
    print line
The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The with statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and correctly.
with open("myfile.txt") as f:
    for line in f:
        print line
After the statement is executed, the file f is always closed, even if a problem was encountered while processing the lines. Other objects which provide predefined clean-up actions will indicate this in their documentation.

No comments: