6.2. Standard Modules
Python comes with a library of standard modules, described in a separate document, the Python Library Reference (“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to operating system primitives such as system calls. The set of such modules is a configuration option which also depends on the underlying platform For example, the winreg module is only provided on Windows systems. One particular module deserves some attention: sys, which is built into every Python interpreter. The variables sys.ps1 and sys.ps2 define the strings used as primary and secondary prompts:
These two variables are only defined if the interpreter is in interactive mode.
The variable sys.path is a list of strings that determines the interpreter’s search path for modules. It is initialized to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is not set. You can modify it using standard list operations:
6.3. The dir() Function
The built-in function dir() is used to find out which names a module defines. It returns a sorted list of strings:
Without arguments, dir() lists the names you have defined currently:
Note that it lists all types of names: variables, modules, functions, etc.
dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in the standard module __builtin__:
6.4. Packages
Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the module name A.B designates a submodule named B in a package namedA. Just like the use of modules saves the authors of different modules from having to worry about each other’s global variable names, the use of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library from having to worry about each other’s module names.
Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion between the various file formats. There are also many different operations you might want to perform on sound data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be writing a never-ending stream of modules to perform these operations. Here’s a possible structure for your package (expressed in terms of a hierarchical filesystem):
When importing the package, Python searches through the directories on sys.path looking for the package subdirectory.
The __init__.py files are required to make Python treat the directories as containing packages; this is done to prevent directories with a common name, such as string, from unintentionally hiding valid modules that occur later on the module search path. In the simplest case, __init__.py can just be an empty file, but it can also execute initialization code for the package or set the__all__ variable, described later.
Users of the package can import individual modules from the package, for example:
This loads the submodule sound.effects.echo. It must be referenced with its full name.
An alternative way of importing the submodule is:
This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:
Yet another variation is to import the desired function or variable directly:
Again, this loads the submodule echo, but this makes its function echofilter() directly available:
Note that when using from package import item, the item can be either a submodule (or subpackage) of the package, or some other name defined in the package, like a function, class or variable. The import statement first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails to find it, an ImportError exception is raised.
Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the previous item.
6.4.1. Importing * From a Package
Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This could take a long time and importing sub-modules might have unwanted side-effects that should only happen when the sub-module is explicitly imported.
The only solution is for the package author to provide an explicit index of the package. The import statement uses the following convention: if a package’s __init__.py code defines a list named__all__, it is taken to be the list of module names that should be imported when from package import * is encountered. It is up to the package author to keep this list up-to-date when a new version of the package is released. Package authors may also decide not to support it, if they don’t see a use for importing * from their package. For example, the filesounds/effects/__init__.py could contain the following code:
This would mean that from sound.effects import * would import the three named submodules of the sound package.
If __all__ is not defined, the statement from sound.effects import * does not import all submodules from the package sound.effects into the current namespace; it only ensures that the packagesound.effects has been imported (possibly running any initialization code in __init__.py) and then imports whatever names are defined in the package. This includes any names defined (and submodules explicitly loaded) by __init__.py. It also includes any submodules of the package that were explicitly loaded by previous import statements. Consider this code:
In this example, the echo and surround modules are imported in the current namespace because they are defined in the sound.effects package when the from...import statement is executed. (This also works when __all__ is defined.)
Although certain modules are designed to export only names that follow certain patterns when you use import *, it is still considered bad practise in production code.
Remember, there is nothing wrong with using from Package import specific_submodule! In fact, this is the recommended notation unless the importing module needs to use submodules with the same name from different packages.
6.4.2. Intra-package References
The submodules often need to refer to each other. For example, the surround module might use the echo module. In fact, such references are so common that the import statement first looks in the containing package before looking in the standard module search path. Thus, the surround module can simply use import echo or from echo import echofilter. If the imported module is not found in the current package (the package of which the current module is a submodule), the import statement looks for a top-level module with the given name.
When packages are structured into subpackages (as with the sound package in the example), you can use absolute imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder needs to use the echo module in the sound.effects package, it can use from sound.effects import echo.
Starting with Python 2.5, in addition to the implicit relative imports described above, you can write explicit relative imports with the from module import name form of import statement. These explicit relative imports use leading dots to indicate the current and parent packages involved in the relative import. From the surround module for example, you might use:
Note that both explicit and implicit relative imports are based on the name of the current module. Since the name of the main module is always "__main__", modules intended for use as the main module of a Python application should always use absolute imports.
6.4.3. Packages in Multiple Directories
Packages support one more special attribute, __path__. This is initialized to be a list containing the name of the directory holding the package’s __init__.py before the code in that file is executed. This variable can be modified; doing so affects future searches for modules and subpackages contained in the package.
While this feature is not often needed, it can be used to extend the set of modules found in a package.
Footnotes
[1] | In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function enters the function name in the module’s global symbol table. |
No comments:
Post a Comment